Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            Free, publicly-accessible full text available January 3, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            Abstract The interaction between the supermassive black hole at the centre of the Milky Way, Sagittarius A*, and its accretion disk occasionally produces high-energy flares seen in X-ray, infrared and radio. One proposed mechanism that produces flares is the formation of compact, bright regions that appear within the accretion disk and close to the event horizon. Understanding these flares provides a window into accretion processes. Although sophisticated simulations predict the formation of these flares, their structure has yet to be recovered by observations. Here we show a three-dimensional reconstruction of an emission flare recovered from Atacama Large Millimeter/Submillimeter Array light curves observed on 11 April 2017. Our recovery shows compact, bright regions at a distance of roughly six times the event horizon. Moreover, it suggests a clockwise rotation in a low-inclination orbital plane, consistent with prior studies by GRAVITY and the Event Horizon Telescope. To recover this emission structure, we solve an ill-posed tomography problem by integrating a neural three-dimensional representation with a gravitational model for black holes. Although the recovery is subject to, and sometimes sensitive to, the model assumptions, under physically motivated choices, our results are stable and our approach is successful on simulated data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available